Identification and Validation of QTLs for Macronutrient Contents in Brown and Milled Rice Using Two Backcross Populations between Oryza sativa and O. rufipogon

Author:

Hu Biao-lin1ORCID,Li Xia1ORCID,Wu Ting1ORCID,Huang De-run2,Huang Feng-lin3,Yin Jian-hua1ORCID,Wu Yan-shou1ORCID

Affiliation:

1. Rice Research Institute, Jiangxi Academy of Agricultural Sciences/National Engineering Laboratory for Rice (Nanchang), Nanchang 330200, China

2. State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China

3. Ministry of Agriculture, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha 410125, China

Abstract

Mineral malnutrition as a prevalent public health issue can be alleviated by increasing the intake of dietary minerals from major staple crops, such as rice. Identification of the gene responsible for mineral contents in rice would help breed cultivars enriched with minerals through marker-assisted selection. Two segregating populations of backcross inbred lines (BIL) were employed to map quantitative trait loci (QTLs) for macronutrient contents in brown and milled rice, BC1F5, and BC2F4:5 derived from an interspecific cross of Xieqingzao B (Oryza sativa) and Dongxiang wild rice (O. rufipogon). Phenotyping the populations was conducted in multiple locations and years, and up to 169 DNA markers were used for the genotyping. A total of 17 QTLs for P, K, Na, Ca, and Mg contents in brown and milled rice distributed on eight regions were identified in the BC1F5 population, which is explained to range from 5.98% to 56.80% of phenotypic variances. Two regions controlling qCa1.1 and qCa4.1 were validated, and seven new QTLs for Ca and Mg contents were identified in the BC2F4:5 population. 18 of 24 QTLs were clustered across seven chromosomal regions, indicating that different mineral accumulation might be involved in common regulatory pathways. Of 24 QTLs identified in two populations, 16 having favorable alleles were derived from O. rufipogon and 10 were novel. These results will not only help understand the molecular mechanism of macronutrient accumulation in rice but also provide candidate QTLs for further gene cloning and grain nutrient improvement through QTL pyramiding.

Funder

Open Fund of the State Key Laboratory of Rice Biology

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3