The Study of Three-Dimensional Granular Stream Flowing through the Test Hopper-Shaped Target

Author:

Qiang Chengwen12ORCID,Yang Weifeng1,Li Long1,Wang Fei1,Deng Weiping1,Zhao Qiang1,Liu Cong1,Zhang Xueying12

Affiliation:

1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The experiments are carried out in a three-dimensional channel with a screw conveyor, which plays the role of granular drives for the granular flow system and determines the injection of granular in the test target section. The jam-to-dense transition of granular flow is studied with the different inclination angle. The results show that, with a fixed diameter of hopper orifice and initial filling position, there is a change from jam to dense when the inclination angle larger than 22°. Variation of the flow rate with elevated frequency of the screw conveyor is further studied. The flow pattern is changed from dilute to dense with increasing rotation frequency of the screw rod. When the rotation frequency is larger than 5 Hz, the flow is dense. The dynamic balance of the interface between dilute to dense granular is observed in the main target section. We further research the dynamic interface by measuring the highest and lowest location with time and also simulate the gravity flow rate and screw conveyor flow rate with EDEM. From the results, we find that the interface between dilute flow and dense flow is influenced by the combined action of crew conveyor flow and dense gravity flow.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3