Predictive Maintenance and Sensitivity Analysis for Equipment with Multiple Quality States

Author:

Wang Xiao1ORCID,Xu Deyi1ORCID,Qu Na1ORCID,Liu Tianqi1ORCID,Qu Fang1ORCID,Zhang Guowei2ORCID

Affiliation:

1. School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China

2. Mechanical School, Shenyang Institute of Engineering, Shenyang 110136, China

Abstract

This paper discusses the predictive maintenance (PM) problem of a single equipment system. It is assumed that the equipment has deteriorating quality states as it operates, resulting in multiple yield levels represented as system observation states. We cast the equipment deterioration as discrete-state and continuous-time semi-Markov decision process (SMDP) model and solve the SMDP problem in reinforcement learning (RL) framework using the strategy-based method. In doing so, the goal is to maximize the system average reward rate (SARR) and generate the optimal maintenance strategy for given observation states. Further, the PM time is capable of being produced by a simulation method. In order to prove the advantage of our proposed method, we introduce the standard sequential preventive maintenance algorithm with unequal time interval. Our proposed method is compared with the sequential preventive maintenance algorithm in a test objective of SARR, and the results tell us that our proposed method can outperform the sequential preventive maintenance algorithm. In the end, the sensitivity analysis of some parameters on the PM time is given.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilization of DS18B20 Temperature Sensor for Predictive Maintenance of Reciprocating Compressor;2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC);2023-12-19

2. Condition-based maintenance with reinforcement learning for refrigeration systems with selected monitored features;Engineering Applications of Artificial Intelligence;2023-06

3. Reinforcement learning for predictive maintenance: a systematic technical review;Artificial Intelligence Review;2023-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3