Stock Trading System Based on Machine Learning and Kelly Criterion in Internet of Things

Author:

Chen Lili1ORCID,Sun Lingyun1ORCID,Chen Chien-Ming1ORCID,Wu Mu-En2ORCID,Wu Jimmy Ming-Tai1ORCID

Affiliation:

1. College of Computer Science and Engineering, Shandong University of Science and Technology, China

2. Department of Information and Finance Management, National Taipei University of Technology, Taiwan

Abstract

The evolution of the Internet of Things (IoT) has promoted the prevalence of the financial industry as a variety of stock prediction models have been able to accurately predict various IoT-based financial services. In practice, it is crucial to obtain relatively accurate stock trading signals. Considering various factors, finding profitable stock trading signals is very attractive to investors, but it is also not easy. In the past, researchers have been devoted to the study of trading signals. A genetic algorithm (GA) is often used to find the optimal solution. In this study, a long short-term (LSTM) memory neural network is used to study stock price fluctuations, and then, genetic algorithms are used to obtain appropriate trading signals. A genetic algorithm is a search algorithm that solves optimization. In this paper, the optimal threshold is found to determine the trading signal. In addition to trading signals, a suitable trading strategy is also crucial. In addition, this research uses the Kelly criterion for fund management; that is, the Kelly criterion is used to calculate the optimal investment score. Effective capital management can not only help investors increase their returns but also help investors reduce their losses.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3