Adaptive Quantitative Trading: An Imitative Deep Reinforcement Learning Approach

Author:

Liu Yang,Liu Qi,Zhao Hongke,Pan Zhen,Liu Chuanren

Abstract

In recent years, considerable efforts have been devoted to developing AI techniques for finance research and applications. For instance, AI techniques (e.g., machine learning) can help traders in quantitative trading (QT) by automating two tasks: market condition recognition and trading strategies execution. However, existing methods in QT face challenges such as representing noisy high-frequent financial data and finding the balance between exploration and exploitation of the trading agent with AI techniques. To address the challenges, we propose an adaptive trading model, namely iRDPG, to automatically develop QT strategies by an intelligent trading agent. Our model is enhanced by deep reinforcement learning (DRL) and imitation learning techniques. Specifically, considering the noisy financial data, we formulate the QT process as a Partially Observable Markov Decision Process (POMDP). Also, we introduce imitation learning to leverage classical trading strategies useful to balance between exploration and exploitation. For better simulation, we train our trading agent in the real financial market using minute-frequent data. Experimental results demonstrate that our model can extract robust market features and be adaptive in different markets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable machine learning for high frequency trading dynamics discovery;Information Sciences;2024-12

2. Twin-system recurrent reinforcement learning for optimizing portfolio strategy;Expert Systems with Applications;2024-11

3. TABLE: Time-aware Balanced Multi-view Learning for stock ranking;Knowledge-Based Systems;2024-11

4. Agree to Disagree: Personalized Temporal Embedding and Routing for Stock Forecast;IEEE Transactions on Knowledge and Data Engineering;2024-09

5. MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3