Ex Vivo and In Vivo Characterization of Interpolymeric Blend/Nanoenabled Gastroretentive Levodopa Delivery Systems

Author:

Ngwuluka Ndidi C.1ORCID,Choonara Yahya E.1ORCID,Modi Girish2,du Toit Lisa C.1,Kumar Pradeep1ORCID,Meyer Leith3,Snyman Tracy4,Pillay Viness1ORCID

Affiliation:

1. Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa

2. Department of Neurology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa

3. Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa

4. National Laboratory Services, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa

Abstract

One approach for delivery of narrow absorption window drugs is to formulate gastroretentive drug delivery systems. This study was undertaken to provide insight into in vivo performances of two gastroretentive systems (PXLNETand IPB matrices) in comparison to Madopar® HBS capsules. The pig model was used to assess gastric residence time and pharmacokinetic parameters using blood, cerebrospinal fluid (CSF), and urine samples. Histopathology and cytotoxicity testing were also undertaken. The pharmacokinetic parameters indicated that levodopa was liberated from the drug delivery systems, absorbed, widely distributed, metabolized, and excreted.Cmaxwere 372.37, 257.02, and 461.28 ng/mL and MRT were 15.36, 14.98, and 13.30 for Madopar HBS capsules,PXLNET, and IPB, respectively. In addition, X-ray imaging indicated that the gastroretentive systems have the potential to reside in the stomach for 7 hours. There was strong in vitro-in vivo correlation for all formulations withr2values of 0.906, 0.935, and 0.945 for Madopar HBS capsules,PXLNET, and IPB, respectively. Consequently,PXLNETand IPB matrices have pertinent potential as gastroretentive systems for narrow absorption window drugs (e.g., L-dopa) and, in this application specifically, enhanced the central nervous system and/or systemic bioavailability of such drugs.

Funder

National Research Foundation

Publisher

Hindawi Limited

Subject

Psychiatry and Mental health,Neurology (clinical),Neuroscience (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3