Connected Transit Bus Dynamic Priority Weight Modeling and Conflicting Request Resolution Control at the Signalized Intersection

Author:

He Shuxian1ORCID,Han Haihang2,Zhang Huan1,Sun Shanzhi2,Qiu Tony Z.13ORCID

Affiliation:

1. Intelligent Transportation System Research Center, Wuhan University of Technology, Wuhan, Hubei, China

2. Zhejiang Scientific Research Institute of Transport, Hangzhou, Zhejiang, China

3. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada

Abstract

Multiaccess edge computing (MEC) and connected vehicle (CV) technologies have shown great potential and strength for traffic perception and real-time computing, which can be applied to enhance the efficiency of connected transit bus operations under their lower penetration conditions. Moreover, for the transit signal priority system, how to establish a model to measure traffic demand for conflicting priority request resolution and improve system response time has been widely researched for the last few decades. This paper proposes a dynamic priority weight (DPW) model for connected transit buses and a traffic signal control approach to coordinate multidirectional conflicting priority requests at a signalized intersection. The proposed model takes advantage of vehicle location, speed, and signal timing data to build time to change (TTOC) correlation functions to measure priority weights of both single-vehicle and directionality accumulation with consideration of vehicles arriving during the current green phase and conflict phase conditions; then, the aggregated priority weight value of each movement can be calculated in real-time. Once the maximum aggregated priority weight value among all movements is determined, the corresponding phase switch strategy is presented for the conflicting request resolution control problem. Homologous algorithm software for distributed deployment can be subsequently used for swift response. Simulation results show that the proposed DPW model-based traffic signal control method shows significant performance advancement, where the queueing vehicle number decrease exceeds 1 pcu/s and the throughput rate of major movements increases by approximately 2% without sacrificing the performance of minor movements in a large amount. What is more, it shows better delay optimization for social vehicles than the algorithm with delay as the objective while declining bus delay appreciable quantity with 43.4 s in average. Field test results also show that this method has excellent abilities to improve intersectional traffic capacity, for which queueing vehicle number and throughput rate indicators of all phases dramatically improved with 1.92 pcu/s and 6.68% on average, except for a slight degradation of individual minor traffic movements with 0.99 pcu/s and 0.11%.

Funder

Major Science and Technology Project of Zhejiang Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3