Performance Analysis of Ten Common QRS Detectors on Different ECG Application Cases

Author:

Liu Feifei12,Liu Chengyu1ORCID,Jiang Xinge3,Zhang Zhimin3,Zhang Yatao3ORCID,Li Jianqing1ORCID,Wei Shoushui3ORCID

Affiliation:

1. The State Key Laboratory of Bioelectronics, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China

2. Shandong Zhong Yang Software Limited Company, Jinan, China

3. School of Control Science and Engineering, Shandong University, Jinan, China

Abstract

A systematical evaluation work was performed on ten widely used and high-efficient QRS detection algorithms in this study, aiming at verifying their performances and usefulness in different application situations. Four experiments were carried on six internationally recognized databases. Firstly, in the test of high-quality ECG database versus low-quality ECG database, for high signal quality database, all ten QRS detection algorithms had very high detection accuracy (F1 >99%), whereas the F1 results decrease significantly for the poor signal-quality ECG signals (all <80%). Secondly, in the test of normal ECG database versus arrhythmic ECG database, all ten QRS detection algorithms had good F1 results for these two databases (all >95% except RS slope algorithm with 94.24% on normal ECG database and 94.44% on arrhythmia database). Thirdly, for the paced rhythm ECG database, all ten algorithms were immune to the paced beats (>94%) except the RS slope method, which only output a low F1 result of 78.99%. At last, the detection accuracies had obvious decreases when dealing with the dynamic telehealth ECG signals (all <80%) except OKB algorithm with 80.43%. Furthermore, the time costs from analyzing a 10 s ECG segment were given as the quantitative index of the computational complexity. All ten algorithms had high numerical efficiency (all <4 ms) except RS slope (94.07 ms) and sixth power algorithms (8.25 ms). And OKB algorithm had the highest numerical efficiency (1.54 ms).

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3