A novel ECG compression algorithm using Pulse-Width Modulation integrated quantization for low-power real-time monitoring

Author:

Devindi Isuri,Liyanage Sashini,Jayarathna Titus,Alawatugoda Janaka,Ragel Roshan

Abstract

AbstractCardiac monitoring systems in Internet of Things (IoT) healthcare, reliant on limited battery and computational capacity, need efficient local processing and wireless transmission for comprehensive analysis. Due to the power-intensive wireless transmission in IoT devices, ECG signal compression is essential to minimize data transfer. This paper presents a real-time, low-complexity algorithm for compressing electrocardiogram (ECG) signals. The algorithm uses just nine arithmetic operations per ECG sample point, generating a hybrid Pulse Width Modulation (PWM) signal storable in a compact 4-bit resolution format. Despite its simplicity, it performs comparably to existing methods in terms of Percentage Root-Mean-Square Difference (PRD) and space-saving while significantly reducing complexity and maintaining robustness against signal noise. It achieves an average Bit Compression Ratio (BCR) of 4 and space savings of 90.4% for ECG signals in the MIT-BIH database, with a PRD of 0.33% and a Quality Score (QS) of 12. The reconstructed signal shows no adverse effects on QRS complex detection and heart rate variability, preserving both the signal amplitude and periodicity. This efficient method for transferring ECG data from wearable devices enables real-time cardiac activity monitoring with reduced data storage requirements. Its versatility suggests potential broader applications, extending to compression of various signal types beyond ECG.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3