Morphology Characterisation of Pitting Corrosion on Sensitized Austenitic Stainless Steel by Digital Image Analysis

Author:

Ribeiro R. B.1,Silva J. W. J.12,Hein L. R. O.2,Pereira M. C.2,Codaro E. N.2,Matias N. T.1

Affiliation:

1. Faculdades Integradas Teresa D’Ávila, FATEA-Rede salesianas, Avenida Peixoto de Castro 539, Vila Celeste, 12606-580 Lorena, SP, Brazil

2. Universidade Estadual Paulista, UNESP-Campus de Guaratinguetá, Avenida Ariberto Pereira da Cunha 333, Pedregulho, 12.516-410 Guaratinguetá, SP, Brazil

Abstract

Pit morphology on sensitized 310S stainless steel has been studied using an image processing method based on reflected light microscopy. Salt Spray (fog) test has been used to induce the pitting corrosion. Morphological pits characters do not depend on sensitization heat treatments applied here. Nucleation rates and growth may be associated with quantity and distribution of chromium carbides. This being so, condition I (heating up to 1065°C during 1 h and air cooling) and condition II (heating up to 1065°C during 1 h and air cooling followed by reheating up to 670°C during 5 h and again air cooling) are the most susceptible to pitting, in particular the first one. In these two conditions, pits are nucleated in grains and in grain boundaries, while in condition III (heating up to 1065°C during 1 h and air cooling followed by reheating up to 620°C during 24 h and again air cooling), pits are preferentially nucleated in boundaries of small grains. Thence, pits usually grow more rapidly in depth than in width, being able to occur partial or total grains separation. Pits are mainly hemispherical, near-hemispherical, near-conical, and near-cylindrical without significant geometric transition associated with an increasing exposure period.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3