Effect of Corrosion on the Hysteretic Behavior of Steel Reinforcing Bars and Corroded RC Columns

Author:

Basdeki MariaORCID,Koulouris KonstantinosORCID,Apostolopoulos Charis

Abstract

The corrosion of steel reinforcement negatively influences the mechanical performance of reinforced concrete (RC) elements reducing both their strength capacity and ductility. Especially in seismic prone areas, the degradation of the cyclic behavior of corroded RC elements is more intense, limiting the service life of structures and leading to premature failures. In the present paper, in order to study the degraded behavior of the embedded (in concrete) steel reinforcement under cyclic loading, laboratory corrosion experiments were performed on embedded steel reinforcing bars. Thereafter, mechanical tests under dynamic loadings with gradually increased deformations were carried out. From the experimental study, hysteretic models of the non-linear behavior of steel bars were extracted in non-corroded and corroded conditions, in the case of both uniform and pitting corrosion. Based on the hysteretic models of steel bars, an analysis of the cyclic response of (non-corroded and corroded) RC columns was performed using the OpenSees code. The outcomes of the present study indicated the negative consequences of corrosion on the hysteretic behavior of steel reinforcing bars, demonstrating mainly the local reduction in their cross-section (pitting corrosion) combined with the loading history and buckling phenomena as the main factors which deviate the mechanical behavior of steel bars from the classic bilinear model of monotonic loading.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3