Heat Conduction Modeling of Fiber Fuse in Single-Mode Optical Fibers

Author:

Shuto Yoshito1ORCID

Affiliation:

1. Ofra Project, Iruma 358-0023, Japan

Abstract

The unsteady-state thermal conduction process in single-mode optical fiber was studied theoretically with the explicit finite-difference method. We assumed that the vitreous silica optical fiber underwent pyrolysis at elevated temperatures to form SiOx (x~1). We also proposed a model in which the optical absorption coefficient of the core layer increased with increasing molar concentration of SiOx. The core-center temperature changed suddenly and reached over 3×104 K when a 1.064-μm laser power of 2 W was input into a short core layer of 40 μm length, which was heated at 2923 K. This thermal wave, that is, a fiber fuse, increased in size and propagated toward the light source at a rate of about 0.54 m/s. The calculated propagation velocity of the fiber fuse was in agreement with the experimental value. Moreover, the average temperature of the radiated region of the core layer gradually approached a temperature of about 5700 K. It was found that the final average temperature was close to the experimentally reported values.

Publisher

Hindawi Limited

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3