Navigation Path Following Platform for a Greenhouse Shuttle Robot Using the State-flow Method

Author:

Yoo Heonjong1ORCID,Baek Donkyu1,Choi Seong-gon2ORCID

Affiliation:

1. Chungbuk National University, Cheongju-si, Republic of Korea

2. Department of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea

Abstract

Localization is an important method for autonomous indoor robots to recognize their positions. Generally, the navigation of a mobile robot is conducted using a camera, Lidar, and global positioning system. However, for an indoor environment, GPS is unavailable. Therefore, a, state-trajectory tracking method is utilized based on a Lidar map. This paper presents the path following of an autonomous indoor mobile robot, that is, a shuttle robot, using a state-flow method via a robot operating system network. MATLAB and Linux high-level computers and an inertial measurement unit sensor are used to obtain the Cartesian coordinate information of a bicycle-type mobile robot. The path following problem can be solved in the state-flow block by setting appropriate time and linear and angular velocity variables. After the predetermined time, the linear and angular velocities are set based on the length of the path and radius of the quarter-circle of the left and right turns in the state-flow block, path planning, which can execute the work effectively, is established using the state-flow algorithm. The state-flow block produces time-series data that are sent to Linux system, which facilitates real-time mobile platform path following scenario. Several cases within the path-following problem of the mobile robot were considered, depending on the linear and angular velocity settings: the mobile robot moved forward and backward, turned in the right and left directions on the circular path. The effectiveness of the method was demonstrated using the desktop-based indoor mobile robot control results. Thus, the paper focuses on the application of the state-flow algorithm to the shuttle robot specifically in the narrow indoor environment.

Funder

Ministry of Science and ICT, South Korea

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of hyper-automation in farming – an analysis;Smart Agricultural Technology;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3