Trimethylamine-N-Oxide Promotes High-Glucose-Induced Dysfunction and NLRP3 Inflammasome Activation in Retinal Microvascular Endothelial Cells

Author:

Xue Lidan1ORCID,Huang Lili1,Tian Yajing1,Cao Xin1ORCID,Song Yu1ORCID

Affiliation:

1. Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu, China

Abstract

Introduction. Along with blood glucose levels, diabetic retinopathy (DR) development also involves endogenous risk factors, such as trimethylamine-N-oxide (TMAO), a product of intestinal flora metabolic disorder, which exacerbates diabetic microvascular complications. However, the effect of TMAO on retinal cells under high-glucose conditions remains unclear. Therefore, this study examined the effects of TMAO on high-glucose-induced retinal dysfunction in the context of NLRP3 inflammasome activation, which is involved in DR. Materials and Methods. TMAO was assessed in the serum and aqueous humor of patients using ELISA. Human retinal microvascular endothelial cells (HRMECs) were treated for 72 h as follows: NG (normal glucose, D-glucose 5.5 mM), NG + TMAO (5 μM), HG (high glucose, D-glucose 30 mM), and HG + TMAO (5 μM). The CCK8 assay was then used to assess cell proliferation; wound healing, cell migration, and tube formation assays were used to verify changes in cell phenotype. ZO-1 expression was determined using immunofluorescence and western blotting. Reactive oxygen species (ROS) formation was assessed using DCFH-DA. NLRP3 inflammasome complex activation was determined using a western blot. Results. The serum and aqueous humor from patients with PDR contained higher levels of TMAO compared to patients with nontype 2 diabetes (Control), non-DR (NDR), and non-PDR (NPDR). TMAO showed significant acceleration of high-glucose-induced cell proliferation, wound healing, cell migration, and tube formation. ZO-1 expression decreased remarkably with the combined action of TMAO and a high glucose compared to either treatment alone. TMAO also promoted high-glucose-activated NLRP3 inflammasome complex. Conclusion. The combination of TMAO and high-glucose results in increased levels of ROS and NLRP3 inflammasome complex activation in HRMECs, leading to exacerbated retinal dysfunction and barrier failure. Thus, TMAO can accelerate PDR occurrence and development, thus indicating the need for early fundus monitoring in diabetic patients with intestinal flora disorders.

Funder

Nantong Science and Technology Bureau

Publisher

Hindawi Limited

Subject

Ophthalmology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3