Cold Atmospheric Pressure Plasma Technology for Modifying Polymers to Enhance Adhesion: A Critical Review

Author:

Baniya Hom Bahadur,Guragain Rajesh Prakash,Subedi Deepak Prasad

Abstract

This review summarizes the results of cold atmospheric pressure plasma technology application in polymers surface treatment. Attention is given to results of changes in the hydrophilic property of polymer surfaces by incorporation of polar functional groups when exposed to atmospheric pressure plasma, depending on the time of treatment, applied voltage, gas flow rate, and distance from the surface. We have successfully developed a plasma device that is able to generate cold atmospheric pressure argon plasma of low temperature (20 – 26) ° C downstream using a high-voltage power source which can be widely used in materials processing. Therefore, a cost-effective system of generating a plasma jet at atmospheric pressure with potential applications has been developed. Cold atmospheric pressure plasma jet (CAPPJ) has shown a lot of applications in recent years such as in materials processing, surface modification, and biomedical materials processing. CAPPJ has been generated by a high voltage (0-20 kV) and high frequency (20-30 kHz) power supply.<br/> The discharge has been characterized by optical and electrical methods. In order to characterize cold atmospheric pressure argon plasma jet, its electron density, electron temperature, rotational temperature, and vibration temperature have been determined using the power balance method, intensity ratio method, Stark broadening method, and Boltzmann plot method, respectively. The improvement in hydrophilicity of the cold plasma-treated polymer samples was characterized by contact angle measurements, surface free energy analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Contact angle analysis showed that the discharge was effective in improving the wettability of polymers after the treatment. Furthermore, atmospheric plasma can be effectively used to remove surface contamination and to chemically modify different polymer surfaces. The chemical changes, especially oxidation and cross-linking, enhance the surface properties of the polymers.

Publisher

Scrivener Publishing

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3