Whole-body & muscle responses to aerobic exercise training and withdrawal in ageing & COPD

Author:

Latimer Lorna E.,Constantin-Teodosiu Dumitru,Popat Bhavesh,Constantin Despina,Houchen-Wolloff Linzy,Bolton Charlotte E.ORCID,Steiner Michael C.,Greenhaff Paul L.

Abstract

COPD patients exhibit lower peak oxygen consumption (V̇O2PEAK), altered muscle metabolism and impaired exercise tolerance compared with age-matched controls. Whether these traits reflect muscle level deconditioning (impacted by ventilatory constraints) and/or dysfunction in mitochondrial ATP production capacity is debated. By studying aerobic exercise training (AET) at a matched relative intensity and subsequent exercise withdrawal period (EW) we aimed to elucidate the whole-body and muscle mitochondrial responsiveness of healthy-young (HY), healthy-older (HO) and COPD volunteers to whole-body exercise.The HY (n=10), HO (n=10) and COPD (n=20) volunteers were studied before, after eight-weeks AET (65% V̇O2PEAK) and after four-weeks EW. V̇O2PEAK, muscle maximal mitochondrial ATP production rates (MAPR), mitochondrial content, mitochondrial DNA copy number and abundance of 59 targeted fuel metabolism mRNAs were determined at all time-points.Muscle MAPR (normalised for mitochondrial content) was not different for any substrate combination in HO, HY and COPD at baseline, but mitochondrial DNA copy number relative to a nuclear-encoded house-keeping gene was greater in HY (mean±sd) (804±67) than in HO (631±69), p=0.041. AET increased V̇O2PEAK in HO (17%, p=0.002) and HY (21%, p<0.001) but not COPD (p=0.603). Muscle MAPR for palmitate increased with training in HO (57%, p=0.041) and HY (56%, p=0.003) and decreased with EW in HO (−45%, p=0.036) and HY (−30%, p=0.016), but was unchanged in COPD (p=0.594). Mitochondrial DNA copy number increased with AET in HY (66%, p=0.001) but not HO (p=0.081) or COPD (p=0.132). The observed changes in muscle mRNA abundance were similar in all groups after AET and EW.Intrinsic mitochondrial function was not impaired by ageing or COPD in the untrained state. Whole-body and muscle mitochondrial responses to AET were robust in HY, evident in HO, but deficient in COPD. All showed robust muscle mRNA responses. Higher relative exercise intensities during whole-body training may be needed to maximise whole-body and muscle mitochondrial adaptation in COPD.

Funder

Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research

NIHR Nottingham Biomedical Research Centre

COPDMAP: The COPD MRC/ABPI Partnership

Arthritis Research UK

NIHR Leicester Biomedical Research Centre

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3