Diverse cardiopulmonary diseases are associated with distinct xenon magnetic resonance imaging signatures

Author:

Wang ZiyiORCID,Bier Elianna A.,Swaminathan Aparna,Parikh Kishan,Nouls John,He Mu,Mammarappallil Joseph G.,Luo Sheng,Driehuys Bastiaan,Rajagopal Sudarshan

Abstract

BackgroundAs an increasing number of patients exhibit concomitant cardiac and pulmonary disease, limitations of standard diagnostic criteria are more frequently encountered. Here, we apply noninvasive 129Xe magnetic resonance imaging (MRI) and spectroscopy to identify patterns of regional gas transfer impairment and haemodynamics that are uniquely associated with chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), left heart failure (LHF) and pulmonary arterial hypertension (PAH).MethodsHealthy volunteers (n=23) and patients with COPD (n=8), IPF (n=12), LHF (n=6) and PAH (n=10) underwent 129Xe gas transfer imaging and dynamic spectroscopy. For each patient, three-dimensional maps were generated to depict ventilation, barrier uptake (129Xe dissolved in interstitial tissue) and red blood cell (RBC) transfer (129Xe dissolved in RBCs). Dynamic 129Xe spectroscopy was used to quantify cardiogenic oscillations in the RBC signal amplitude and frequency shift.ResultsCompared with healthy volunteers, all patient groups exhibited decreased ventilation and RBC transfer (both p≤0.01). Patients with COPD demonstrated more ventilation and barrier defects compared with all other groups (both p≤0.02). In contrast, IPF patients demonstrated elevated barrier uptake compared with all other groups (p≤0.007), and increased RBC amplitude and shift oscillations compared with healthy volunteers (p=0.007 and p≤0.01, respectively). Patients with COPD and PAH both exhibited decreased RBC amplitude oscillations (p=0.02 and p=0.005, respectively) compared with healthy volunteers. LHF was distinguishable from PAH by enhanced RBC amplitude oscillations (p=0.01).ConclusionCOPD, IPF, LHF and PAH each exhibit unique 129Xe MRI and dynamic spectroscopy signatures. These metrics may help with diagnostic challenges in cardiopulmonary disease and increase understanding of regional lung function and haemodynamics at the alveolar–capillary level.

Funder

National Heart, Lung, and Blood Institute

National Institutes of Health

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3