Diurnal cycle of ozone throughout the troposphere over Frankfurt as measured by MOZAIC-IAGOS commercial aircraft

Author:

Petetin H.1,Thouret V.1,Athier G.1,Blot R.1,Boulanger D.2,Cousin J.-M.1,Gaudel A.34,Nédélec P.1,Cooper O.34

Affiliation:

1. Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, France

2. Observatoire Midi-Pyrénées, Université de Toulouse, CNRS, UPS, France

3. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States

4. NOAA Earth System Research Laboratory, Boulder, Colorado, United States

Abstract

Abstract Ozone is generally assumed to have weak diurnal variations in the free troposphere due to lower production rates than in the boundary layer, in addition to a much lower NO titration and the absence of dry deposition at the surface. However, this hypothesis has not been proven due to a lack of high frequency observations at multiple times per day. For the first time, we take benefit from the frequent O3 vertical profiles measured above Frankfurt in the framework of the MOZAIC-IAGOS program to investigate the diurnal variations of O3 mixing ratios at multiple pressure levels throughout the troposphere. With about 21,000 aircraft profiles between 1994 and 2012 (98 per month on average), distributed throughout the day, this is the only dataset that can allow such a study. As expected, strong diurnal variations are observed close to the surface, in particular during spring and summer (enhanced photochemistry and surface deposition). Higher in altitude, our observations show a decrease of the diurnal cycle, with no diurnal cycle discernible above 750 hPa, whatever the season. Similar results are observed for the different percentiles of the O3 distribution (5th, 25th, 50th, 75th, 95th). An insight of the changes of the diurnal cycles between 1994–2003 and 2004–2012 is also given. We found higher O3 mixing ratios during the latter period, particularly on the lowest pressure levels, despite lower mixing ratios during summer.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3