PREDICTION OF FORMATION ENERGY USING TWO-STAGE MACHINE LEARNING BASED ON CLUSTERING

Author:

Fan Xingyue

Abstract

The formation energy (Hf) is one of the important properties associated with the thermodynamic stability of ABO3-type perovskite. In this work, two-stage machine learning based on hierarchical clustering and regression was designed for improving the prediction values of the density-functional theory (DFT) Hf of ABO3-type perovskites. A global dataset was clustered into Cluster 1 and Cluster 2 using the CHI (the Calinski-Harabasz index). To compare the prediction performances of Hf, DTR (decision tree regression), GBRT (gradient boosted regression trees), RFR (random forest regression) and ETR (extra tree regression) were applied to build models of Cluster 1, Cluster 2 and the global dataset, respectively. The results showed that all four different regression models of Cluster 1 had a higher R2, and lower MSE and MAE than those of the global dataset, while the models of Cluster 2 were poorer. Meanwhile, the GBRT model of Cluster 1 achieved a higher R2 of 0.917, and lower MSE and MAE of 0.033 eV/atom and 0.125 eV/atom. We further validated and compared the generalization ability of the models by predicting the Hf of ABO3-type perovskite previously unseen in the training set. The two-stage machine-learning models proposed here can provide useful guidance for accelerating the exploration of materials with desired properties.

Publisher

Institute of Metals and Technology

Subject

Metals and Alloys,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3