Hardness prediction in the upsetting process of Al%ZrO2—an approach to machine learning using regression and classification models

Author:

Ch Harikrishna1,Nagaraju C.H.2,Battina N. Malleswararao1ORCID,Kummitha Obula Reddy3ORCID

Affiliation:

1. Department of Mechanical EngineeringShri Vishnu Engineering College for Women, Bhimavaram 534202, India

2. Department of Mechanical EngineeringV. R. Siddhartha Engineering College, Kanuru, Vijayawada 520007, India

3. Department of Mechanical EngineeringB V Raju Institute of Technology, Narsapur, Telangana 502313, India

Abstract

The current study focuses on the prediction of metal hardness distribution in upsetting tests for different compositions of ZrO2 embedded with an aluminum matrix using machine learning algorithms and finite element (FE) analysis. The mass fraction of the ZrO2 particles varied from 4% to 8%, and three sets of solid cylindrical rods with Al4%ZrO2, Al6%ZrO2, and Al8%ZrO2 were prepared using the stir casting method. The upsetting process was simulated, and an equation for predicting hardness was developed from the equivalent strain distributions. Artificial neural networks (ANNs), multilinear regression (MLR) along with equations developed from FE analysis were used to train the model for regression analysis, considering the principal stresses, friction factor, anisotropy ratio, effective strain, and hoop strain as input and the magnitude of hardness as output parameters. Regression analysis reveals that ANN (tri-layer network), XGBoost, and MLR algorithms are the best suitable for the given data sets with a root mean square ( R2) greater than 0.95. XGBoost, ANN (narrow), and SVM are linear and are the most recommendable classifier algorithms for the current investigation. Hardness data from ring compression tests were used to validate the results obtained from the trained models with the test results.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3