A systematic review of hardware technologies for small-scale self-driving cars

Author:

Caleffi FelipeORCID,Rodrigues Lauren da SilvaORCID,Stamboroski Joice da SilvaORCID,Rorig Braian VargasORCID,Santos Maria Manoela Cardoso dosORCID,Zuchetto VanessaORCID,Raguzzoni Ítalo BrumORCID

Abstract

Autonomous vehicle (AV) technology has the potential to revolutionize the transportation and logistics industry, making it more efficient and safer. However, testing such technologies is often limited by time, space, and cost constraints. Therefore, in recent years, several initiatives have emerged to test autonomous software and hardware on scaled vehicles. In order to provide guidance for future research, this systematic literature review was conducted to provide an overview of the literature surrounding small-scale self-driving cars, summarizing the current autonomous platforms deployed and focusing on the hardware developments in this field. Through the use of databases such as Web of Science, Scopus, Springer Link, Wiley, ACM Digital Library, and the TRID, 38 eligible studies that present small-scale testing of self-driving cars were identified and reviewed. The results indicated that publications on the topic are relatively new, with only the last four years showing an increase in the number of publications. Additionally, most papers only presented preliminary results, highlighting the potential for further research and development in the field. Research papers predominantly focused on software rather than hardware.

Publisher

Universidade Federal de Santa Maria

Subject

General Medicine

Reference61 articles.

1. AHN, H. et al. Experimental testing of a semi-autonomous multi-vehicle collision avoidance algorithm at an intersection testbed. In: IEEE International Conference on Intelligent Robots and Systems. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2015. p. 4834–4839. Disponível em: https://ieeexplore.ieee.org/document/7354056. Acesso em: 25 ago. 2022.

2. ALCALÁ, E. et al. Autonomous racing using Linear Parameter Varying-Model Predictive Control (LPV-MPC). Control Engineering Practice, [s. l.], v. 95, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0967066119302187?via%3Dihub. Acesso em: 25 ago. 2022.

3. ANDERT, E.; KHAYATIAN, M.; SHRIVASTAVA, A. Crossroads: Time-Sensitive Autonomous Intersection Management Technique. In: Proceedings - Design Automation Conference. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2017. Disponível em: https://dl.acm.org/doi/10.1145/3061639.3062221. Acesso em: 25 ago. 2022.

4. ANINDYAGUNA, K.; BASJARUDDIN, N. C.; SAEFUDIN, D. Overtaking assistant system (OAS) with fuzzy logic method using camera sensor. In: 2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering, ICIMECE 2016. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2016. p. 89–94. Disponível em: https://ieeexplore.ieee.org/document/7910420. Acesso em: 25 ago. 2022.

5. BAE, I. et al. Path generation and tracking based on a Bézier curve for a steering rate controller of autonomous vehicles. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. [S. l.: s. n.], 2013. p. 436–441. Disponível em: https://ieeexplore.ieee.org/document/6728270. Acesso em: 25 ago. 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3