Direct red 83 textile dye degradation using photoperoxidation and photo-fenton: kinetic studies, toxicity and neural networks modeling

Author:

Amorim Nataly Daiany de OliveiraORCID,Nascimento Graziele Elisandra doORCID,Charamba Lívia Vieira CarliniORCID,Santana Rayany Magali da RochaORCID,Silva Pollyanna Michelle daORCID,Napoleão Thiago HenriqueORCID,Napoleão Daniella CarlaORCID

Abstract

Textile dyes have been observed in aquatic matrices that receive effluents from different textile industries. These compounds have the peculiarity of being resistant to the physical, chemical and biological treatments commonly used in wastewater treatment plants. Thus, alternative treatments such as advanced oxidative processes (AOP) have been considered in order to promote the degradation of this type of pollutant, being the photoperoxidation and photo-Fenton processes the most used. Therefore, the present work evaluated the efficiency of these AOP in the degradation of direct red 83 dye. It was found a greater efficiency of the photoperoxidation process, especially in the degradation of functional groups observed at 289 nm. This AOP presented a pseudo first order reaction kinetics, with rapid decay in the first minutes. The MLP (5-21-2) neural network model was able to satisfactorily predict the degradation of the dye under study. Finally, it was found that the proposed process showed no adverse effects when studying the toxicity in bacteria.

Publisher

Universidad Federal de Santa Maria

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3