Prospects for Applying Neural Networks for Procedural Generation of Game Content in Esports

Author:

Sergeev Sergey12ORCID,Mikryukova Alisa1

Affiliation:

1. St. Petersburg State University

2. Peter the Great Saint-Petersburg Polytechnic University

Abstract

This article provides an overview of research and practices on using neural network technologies in the field of procedural content generation for esports games. The authors explore the history, current approaches to using artificial neural networks in creating game elements, including levels, characters and scenarios, with the aim of enhancing the gaming experience and increasing the uniqueness of the virtual game world. The article covers various aspects of using neural network methods, such as generative models, autoencoders, generative adversarial networks, deep learning, and recurrent neural networks, for creating dynamic and unpredictable content. Examples of the successful implementation of these technologies in popular esports games are discussed, and potential challenges and issues related to applying neural networks in this context are explored. The authors discuss the prospects for the further development of neural network technologies in esports and offer recommendations for their optimal implementation. Overall, the article presents an analysis of the current state and future opportunities for using neural network approaches for procedural content generation in esports scenarios.

Publisher

Bryansk State Technical University BSTU

Reference30 articles.

1. Усманов Д.Р., Семенов Р.Е., Нигматзянова Л.Р. Компьютерная игровая индустрия как фактор развития экономики // Научные дискуссии. 2023. Т. 3. №2. С. 92-96. EDN ZHEJWX., Usmanov D.R., Semenov R.E., Nigmatzyanova L.R. Computer Gaming Industry as a Factor in Economic Development. Scientific Discussions. 2023;3(2):92-96.

2. Сергеев С.Ф., Тимохов В.В., Баскаков А.С. и др. Сравнительный анализ профессионально-важных качеств киберспортсменов базовых игровых дисциплин // Актуальные проблемы психологии труда, инженерной психологии и эргономики. Выпуск 9 / Под ред. А. А. Обознова, А. Л. Журавлева. М.: Изд-во «Институт психологии РАН», 2020. С. 316-337. (Труды Института психологии РАН). DOI 10.38098/ergo.2020.018. EDN ETMAEI. ISBN 978-5-9270-0422-5., Sergeev S.F., Timokhov V.V., Baskakov A.S., et al. Comparative Analysis of Professionally Important Qualities of E-Sports Players in Basic Game Disciplines. In: Oboznova AA, Zhuravleva AL, editors. Proceedings of the Institute of Psychology of the Russian Academy of Sciences: Current Problems of Labour Psychology, Engineering Psychology and Ergonomics. Moscow: Publishing house of the Institute of Psychology RAS: 2020. 9. p. 316-337. DOI 10.38098/ergo.2020.018.

3. Сергеев С.Ф. Эргономика киберспорта: неклассические представления // Человеческий фактор: проблемы психологии и эргономики. 2018. № 3 (88). С. 28-34. EDN YYKCAX., Sergeev S.F. The Ergonomics of the Esports: Non-Classical Views. Human Factor: Problems of Psychology and Ergonomics. 2018;3(88):28-34.

4. Сергеев С.Ф. Юзабилити в киберспорте: игровые интерфейсы и среды // Человеческий фактор: проблемы психологии и эргономики. 2018. № 3 (88). С. 43-47. EDN YYKCAX., Sergeev S.F. Usability in Esports: Gaming Interfaces and Environments. Human Factor: Problems of Psychology and Ergonomics. 2018;3(88):43-47.

5. Barriga N.A. A Short Introduction to Procedural Content Generation Algorithms for Videogames. International Journal on Artificial Intelligence Tools. 2019;28(2). DOI 10.1142/s0218213019300011/, Barriga N.A. A Short Introduction to Procedural Content Generation Algorithms for Videogames. International Journal on Artificial Intelligence Tools. 2019;28(2). DOI 10.1142/s0218213019300011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3