Investigations on Magnetic Field Assisted Electrochemical Discharge Machining Process

Author:

Appalanaidu Botcha1,Kumar Arya Rajendra2,Dvivedi Akshay1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India

2. Department of Mechanical Engineering, Indian Institute of Technology, Mumbai, Maharastra, India

Abstract

Electrochemical discharge machining (ECDM) process is an arising unconventional machining process for the micromachining of non-conducting materials. During the ECDM process, surface damages, machining continuity at higher depths and hole over cut (HOC) are the main issues during drilling. Previous researchers reported that gas film thickness, debris evacuation and electrolyte replenishment are the prime reasons for the lack of surface quality and lower hole depth. The present investigation has employed a magnetic field during the machining process, and they found a positive effect on the above-mentioned issues. Lorentz force was produced during the machining process, and created a circular motion of the electrolyte around the tool electrode. This phenomenon helped to control the gas film thickness, debris flushing, and electrolyte replenishment at the tool end. In the present work, the authors used a 1300 Gauss Fe-based ceramic permeant ring magnet. Magnetic field strength for both south and north poles was measured using a digital Gauss meter. A high-speed image-capturing camera was used to understand the bubble generation, gas film formation, and debris evacuation during the machining process. The authors applied both north and south-pole magnetic fields for the investigation of the machining process and compared the results with the conventional ECDM process. Better results in surface quality, hole depth, and HOC were achieved with the south pole magnetic field compared to the traditional ECDM process.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3