Purification and Characterization of Natural Solid-Substrate Degrading and Alcohol Producing Hyperthermostable Alkaline Amylase from Bacillus cereus (sm-sr14)

Author:

Sahoo Sumit1,Roy Sudipta1,Santra Dipannita1,Maiti Sayantani1,Roul Sonali1,Maiti Smarajit1ORCID

Affiliation:

1. Post Graduate Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore-721102, West Bengal, India

Abstract

Objective:Amylases enzymes hydrolyze starch molecules to produce diverse products including dextrins, and progressively smaller polymers. These include glucose units linked through α-1- 1, α-1-4, α-1-6, glycosidic bonds.Methods:This enzyme carrying an (α /β) 8 or TIM barrel structure is also produced containing the catalytic site residues. These groups of enzymes possess four conserved regions in their primary sequence. In the Carbohydrate-Degrading Enzyme (CAZy) database, α-amylases are classified into different Glycoside Hydrolase Families (GHF) based on their amino acid sequence. The present objective was to study one such enzyme based on its molecular characterization after purification in our laboratory. Its main property of solid-natural starch degradation was extensively investigated for its pharmaceutical/ industrial applications.Results:Amylase producing bacteria Bacillus cereus sm-sr14 (Accession no. KM251578.1) was purified to homogeneity on a Seralose 6B-150 gel-matrix and gave a single peak during HPLC. MALDITOF mass-spectrometry with bioinformatics studies revealed its significant similarity to α/β hydrolase family. The enzyme showed an efficient application; favourable Km, Vmax and Kcat during the catalysis of different natural solid starch materials. Analysis for hydrolytic product showed that this enzyme can be classified as the exo-amylase asit produced a significant amount of glucose.Conclusion:Besides the purified enzyme, the present organism Bacillus cereus sm-sr14 could degrade natural solid starch materials like potato and rice up to the application level in the pharmaceutical/ industrial field for alcohol production.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3