Comparative Study of Femur Bone Having Different Boundary Conditions and Bone Structure Using Finite Element Method

Author:

Chethan K.N.,Zuber Mohammad,Bhat Shyamasunder N.,Shenoy Satish B.

Abstract

Background:Femur bone is an important part in human which basically gives stability and support to carry out all day to day activities. It carries loads from upper body to lower abdomen.Objective:In this work, the femur having composite structure with cortical, cancellous and bone marrow cavity is bisected from condyle region with respect to 25%, 50% and 75% of its height. There is considerable difference in the region chosen for fixing all degrees of freedom in the analysis of femur.Methods:The CT scans are taken, and 3D model is developed using MIMICS. The developed model is used for static structural analysis by varying the load from 500N to 3000N.Results:The findings for 25% bisected femur model report difference in directional deformation less than 5% for loads 2000N and less. In the study comparing fully solid bone and the composite bone, the total deformation obtained for a complete solid bone was 3.5 mm which was 18.7% less than that determined for the composite bone.Conclusion:The standardization for fixing the bone is developed. And it is required to fix the distal end always with considering full femur bone.

Publisher

Bentham Science Publishers Ltd.

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3