Osteon shape variation in the femoral diaphysis: A geometric‐morphometric approach on human cortical bone microstructure in an elderly sample

Author:

Leiss Luisa1,Ramphaleng Tshegofatso2,Bacci Nicholas2,Houlton Tobias M. R.12,García‐Donas Julieta G.12

Affiliation:

1. Centre for Anatomy and Human Identification, School of Science and Engineering University of Dundee Dundee UK

2. Human Variation and Identification Research Unit, Faculty of Health Sciences, School of Anatomical Sciences University of the Witwatersrand Johannesburg South Africa

Abstract

AbstractGeometric morphometrics (GMM) have been applied to understand morphological variation in biological structures. However, research studying cortical bone through geometric histomorphometrics (GHMM) is scarce. This research aims to develop a landmark‐based GHMM protocol to depict osteonal shape variation in the femoral diaphysis, exploring the role of age and biomechanics in bone microstructure. Proximal, midshaft, and distal anatomical segments from the femoral diaphysis of six individuals were assessed, with 864 secondary intact osteons from eight periosteal sampling areas being manually landmarked. Observer error was tested using Procrustes ANOVA. Average osteonal shape and anatomical segment‐specific variation were explored using principal component analysis. Osteon shape differences between segments were examined using canonical variate analysis (CVA). Sex differences were assessed through Procrustes ANOVA and discriminant function analysis (DFA). The impact of osteonal size on osteonal shape was investigated. High repeatability and reproducibility in osteon shape landmarking were reported. The average osteon shape captured was an elliptical structure, with PC1 reflecting more circular osteons. Significant differences in osteon shape were observed between proximal and distal segments according to CVA. Osteon shape differed between males and females, with DFA showing 52% cross‐validation accuracies. No effect of size on shape was reported. Osteonal shape variation observed in this study might be explained by the elderly nature of the sample as well as biomechanical and physiological mechanisms playing different roles along the femoral diaphysis. Although a larger sample is needed to corroborate these findings, this study contributes to the best of our knowledge on human microanatomy, proposing a novel GHMM approach.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3