PID Parameters Optimization Research for Hydro Turbine Governor by an Improved Fuzzy Particle Swarm Optimization Algorithm

Author:

Gonggui Chen,Yangwei Du,Yanyan Guo,Shanwai Huang,Lilan Liu

Abstract

Parameter optimization of water turbine regulating system (WTRS) is decisive in providing support for the power quality and stability analysis of power system. In this paper, an improved fuzzy particle swarm optimization (IFPSO) algorithm is proposed and used to solve the optimization problem for WTRS under frequency and load disturbances conditions. The novel algorithm which is based on the standard particle swarm optimization (PSO) algorithm can speed up the convergence speed and improve convergence precision with combination of the fuzzy control thought and the crossover thought in genetic algorithm (GA). The fuzzy control is employed to get better dynamics of balance between global and local search capabilities, and the crossover operator is introduced to enhance the diversity of particles. Two different types of WTRS systems are built and analyzed in the simulation experiments. Furthermore, the sum of regulating time and another number that is the integral of sum for absolute value of system error and the squared governor output signal is considered as the fitness function of this algorithm. The simulation experiments for parameter optimization problem of WTRS system are carried out to confirm the validity and superiority of the proposed IFPSO, as compared to standard PSO, Ziegler Nichols (ZN) algorithm and fuzzy PID algorithm in terms of parameter optimization accuracy and convergence speed. The simulation results reveal that IFPSO significantly improves the dynamic performance of system under all of the running conditions.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3