Varying Effects of Iron Oxide Nanoparticles (IONPs) on the Bacterial Cells

Author:

Vimal Archana1ORCID,Jouvairiya Umme1,Fatima Alvi Mehar1,Ahmad Faridi Soban1,Osama Khwaja1

Affiliation:

1. Department of Bioengineering, Integral University, Lucknow– 226026, Uttar Pradesh, India

Abstract

Abstract: Nanoparticles have a wide range of responsive reactions in bacterial cells depending on their characteristics. They interact with organisms at a cellular level and are capable of producing unexpected reactions depending on their own and cell’s morphological features. Some functions provide betterment of cells and some cause disruptions in the cell functioning or exhibit toxicity for them. Nanoparticles, depending on their toxicity, can also cause alterations in cellular physiology. Different nanoparticles affect different biological species in different ways. As a result, a comprehensive investigation is necessary for all types of nanoparticles to demonstrate their beneficial and harmful effects on various species in terms of growth, inhibition, toxicity, and death. In this review, we have only focused on the iron nanoparticle and their effects on bacterial cells as they are the most commonly used nanoparticle in biology and microbiology because of their unique physicochemical properties (size, shape, stability, etc.). These properties of NPs allow them to react with the bacterial cell surfaces and create a response (which can either support the growth of the bacteria or cause an anti-bacterial or anti-microbial effect on them). These properties are also changeable if we alter the morphological features of the NPs. Studies have shown improvement in microbiological reaction rates by using magnetic nanoparticles. However, nanoparticle toxicity is the major area of concern, as it can decrease therapeutic efficiency and cause adverse effects. Considering the wide range of responses and their reasons, this review summarizes the effects an iron oxide nanoparticle can have on the bacterial cell in general, the factors that influence those effects, and the relation of NP's characteristics to their significant differences in effects on bacteria.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3