Interaction of Fe2O3 and Fe3O4 Nanoparticle with Pathogenic Bacteria: A In-silico Molecular Mechanism Study

Author:

Luktuke Sahil1,Raj Aditya1,Santra Sourav2,Das Sudip1,Chakravorty Arghya1,Ramesh Karthikeyan1,Nila Balaji1,K Harjeet1,Sankar Sana Siva3,Raghavan Vimala1

Affiliation:

1. Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India

2. Department of Microbiology, Vidyasagar University, Midnapore, 721102, West Bengal, India

3. School of Chemical Engineering, Yeungnam University, Gyeongbuk, Gyeongsan, 3854, South Korea

Abstract

Background:: Magnetic materials like iron, nickel, and cobalt have been a subject of interest among the scientific and research community for centuries. Owing to their unique properties, they are prevalent in the mechanical and electronic industries. In recent times, magnetic materials have undeniable applications in biotechnology and nanomedicine. Bacteria like Salmonella enterica, Clostridium botulinum, Bacillus subtilis, etc, pose a hazard to human health and livestock. This ultimately leads to huge yields and economic losses on a global scale. Antimicrobial resistance has become a significant public health concern in recent years, with the increasing prevalence of drugresistant infections posing a significant threat to global health. Many coherent studies have successfully reported magnetic metal oxide nanoparticles to be highly selective, specific, and effective in neutralizing pathogens through various mechanisms like cell membrane disruption, direct contact-mediated killing, or by generating Reactive Oxygen Species (ROS) and numerous costimulatory and inflammatory cytokines. Therefore, we explored the inhibitory effects of iron oxide nanoparticles (NPs) on various pathogenic bacteria via an in-silico approach. This method helped us to understand the active sites where the iron oxide NPs bind with the bacterial proteins. Methods:: The 3D crystal structures of all the pathogenic proteins of Streptococcus pneumoniae, Pseudomonas aeruginosa, Vibrio cholerae, Salmonella enterica, Shigella flexneri, Clostridium botulinum and nanoparticles (Fe2O3 and Fe3O4) under study were downloaded from RCSB PDB and ChemSpider official websites respectively. It was followed by the in-silico molecular Docking using PyRx and AutoDock Vina and analyzed on LigPlot. Results:: This study interprets the efficacy of the Fe2O3 and Fe3O4 nanoparticles against all the test bacteria. At the same time, Fe2O3 and Fe3O4 formed the most stable complexes with cholera enterotoxin subunit B and lectin II (PA-IIL) mutant S23A of Pseudomonas aeruginosa, respectively. Conclusion:: As in this era of AMR, researchers have been exploring alternative strategies to combat bacterial infections, including using magnetic nanoparticles as a potential treatment. They possess unique physical and chemical properties that make them attractive candidates for antimicrobial therapy, including their ability to penetrate bacterial biofilms and selectively target pathogenic bacteria while leaving healthy cells unharmed. This study examined the inhibitory effects of iron oxide (magnetic) nanoparticles, namely Fe2O3 and Fe3O4, on various bacterial proteins involved in cell-to-cell interactions and pathogenesis.

Publisher

Bentham Science Publishers Ltd.

Reference75 articles.

1. Vinnik D.A.; Zhivulin V.E.; Sherstyuk D.P.; Starikov A.Y.; Zezyulina P.A.; Gudkova S.A.; Zherebtsov D.A.; Rozanov K.N.; Trukhanov S.V.; Astapovich K.A.; Turchenko V.A.; Sombra A.S.B.; Zhou D.; Jotania R.B.; Singh C.; Trukhanov A.V.; Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Mater Today Chem 2021,20,100460

2. Vinnik D.A.; Zhivulin V.E.; Sherstyuk D.P.; Starikov A.Y.; Zezyulina P.A.; Gudkova S.A.; Zherebtsov D.A.; Rozanov K.N.; Trukhanov S.V.; Astapovich K.A.; Sombra A.S.B.; Zhou D.; Jotania R.B.; Singh C.; Trukhanov A.V.; Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. J Mater Chem C Mater Opt Electron Devices 2021,9(16),5425-5436

3. Agayev F.G.; Trukhanov S.V.; Trukhanov A.V.; Jabarov S.H.; Ayyubova G.S.; Mirzayev M.N.; Trukhanova E.L.; Vinnik D.A.; Kozlovskiy A.L.; Zdorovets M.V.; Sombra A.S.B.; Zhou D.; Jotania R.B.; Singh C.; Trukhanov A.V.; Study of structural features and thermal properties of barium hexaferrite upon indium doping. J Therm Anal Calorim 2022,147(24),14107-14114

4. Kozlovskiy A.L.; Zdorovets M.V.; Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater Chem Phys 2021,263,124444

5. Hussein M.M.; Saafan S.A.; Abosheiasha H.F.; Kamal A.A.; Mahmoud A.E.; Zhou D.; Trukhanov S.V.; Zubar T.I.; Trukhanov A.V.; Darwish M.A.; Structural and dielectric characterization of synthesized nano-BSTO/PVDF composites for smart sensor applications. Materials Advances 2023,4(22),5605-5617

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3