Investigating the Dynamic Creep and the Tensile Performance of Zeolitic Tuff-modified Warm Asphalt Mixtures

Author:

Al-Mistarehi Bara',Hanandah Shadi,Shtayat Amir,Qtaishat Ali,Alhasan Tariq K.,Al-kharabsheh Buthainah,Imam Rana,Abu Salim Reem,Alsmadi Amro,Abdallah Ashraf

Abstract

Aims This research investigates the effect of adding natural Jordanian Zeolitic tuffs to the SUPERPAVE asphalt mixture at the dynamic creep and the indirect tensile performance. Background Rutting and fatigue are considered the most common types of distress that affect pavements all over the world. Many factors can affect these properties, such as different aggregate properties, asphalt grades, and properties, as well as the type and amount of the mineral filler. Mineral fillers play an important role in enhancing the asphalt mixtures' performance by filling the voids in the mixture besides improving the cohesion of the binder as it has a small weight in addition to a very large surface area. Generally, the powder of limestone is the most used type of filler. However, studies showed that many materials could also be used as mineral fillers successfully. The focus of this study is using natural Jordanian Zeolitic tuff as a mineral filler. Jordanian zeolitic tuff mainly consists of Phillipsite, chabazite, and faujasite, which are considered the most abundant Zeolitic tuff minerals. The pyroclastic material is widely distributed in the Badia region of northeast Jordan. Zeolitic tuffs are located in Jabal Aritayn (30km northeast of Azraq), Tlul AlShahba (20 km east of Al Safawi), Tal Al-Rimah (35 km northeast of Al Mafraq), and other small deposits in central and south Jordan. Objectives The aim of this research was to study the impact of Zeolitic tuffs on overall Superpave asphalt mixture performance. Methods The specimens were prepared using the optimum asphalt content obtained by the SUPERPAVE method. Dynamic Testing System DTS-16 was used to apply both dynamic creep and indirect tensile tests that give a good idea about the rutting and fatigue behavior of asphalt mixtures. Both tests were conducted at 25 °C. Results The Zeolitic tuffs modified asphalt mixtures have lower accumulated strains and higher creep stiffness compared to the control mixture. Subsequently, the indirect tensile test results showed that the modified asphalt mixtures have a higher resilient modulus than the control asphalt mix. Generally, using Zeolitic tuffs as a modifier of asphalt mixtures enhanced the rutting and fatigue resistance. The results showed that asphalt mixtures fortified with 25% Zeolitic tuffs emerged as the best contenders for rutting resistance. Also, mixtures enriched with 50% Zeolitic tuffs stood out in fatigue resistance performance. Conclusion The best dynamic creep performance was by adding 25% Zeolitic tuffs by the mineral filler mass, while the best resilient modulus was by adding 50% Zeolitic tuffs by the mineral filler mass. Other The overarching goals encompass understanding the dynamic creep behavior of Zeolitic tuff-infused asphalt blends, deciphering its indirect tensile performance, pinpointing the ideal replacement ratio for mineral fillers, and drawing a performance comparison between WMA and conventional Hot Mix Asphalt (HMA) compositions.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3