The Evaluation of Metal Co-ordinating Bis-Thiosemicarbazones as Potential Anti-malarial Agents

Author:

Akladios Fady N.1,Andrew Scott D.1,Boog Samantha J.1,de Kock Carmen2,Haynes Richard K.3,Parkinson Christopher J.1

Affiliation:

1. School of Biomedical Sciences, Charles Sturt University, Orange, NSW 2800, Australia

2. Division of Clinical Pharmacology, University of Cape Town, Groote Schuur Hospital, Observatory 7925, South Africa

3. Centre for Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa

Abstract

Background:The emergence of resistance to the artemisinins which are the current mainstays for antimalarial chemotheraphy has created an environment where the development of new drugs acting in a mechanistally discrete manner is a priority.Objective:The goal of this work was to synthesize ane evaluate bis-thiosemicarbazones as potential antimalarial agents. </P><P> Methods: Fifteen compounds were generated using two condensation protocols and evaluated in vitro against the NF54 (CQ sensitive) strain of Plasmodium falciparum. A preliminary assessment of the potential for human toxicity was conducted in vitro against the MRC5 human lung fibroblast line.Results:The activity of the bis-thiosemicarbazones was highly dependent on the nature of the arene at the core of the structure. The inclusion of a non-coordinating benzene core resulted in inactive compounds, while the inclusion of a pyridyl core resulted in compounds of moderate or potent antimalarial activity (4 compounds showing IC50 < 250 nM).Conclusion:Bis-thiosemicarbazones containing a central pyridyl core display potent antimalarial activity in vitro. Sequestration and activation of ferric iron appears to play a significant role in this activity. Ongoing studies are aimed at further development of this series as potential antimalarials.

Funder

South African MRC Flagship

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3