Morphological Segmentation Analysis and Texture-based Support Vector Machines Classification on Mice Liver Fibrosis Microscopic Images

Author:

Wang Yu1,Shi Fuqian1,Cao Luying1,Dey Nilanjan2,Wu Qun3,Ashour Amira Salah4,Sherratt Robert Simon5,Rajinikanth Venkatesan6,Wu Lijun7

Affiliation:

1. The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

2. Department of Information Technology, Techno India College of Technology, West Bengal, India

3. Universal Design Institute, Zhejiang Sci-Tech University, Hangzhou, China

4. Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt

5. Department of Biomedical Engineering, University of Reading, Reading, United Kingdom

6. Department of EIE, St. Joseph's College of Engineering, Chennai, India

7. Institute of Digitized Medicine, Wenzhou Medical University, Wenzhou, China

Abstract

Background: To reduce the intensity of the work of doctors, pre-classification work needs to be issued. In this paper, a novel and related liver microscopic image classification analysis method is proposed. Objective: For quantitative analysis, segmentation is carried out to extract the quantitative information of special organisms in the image for further diagnosis, lesion localization, learning and treating anatomical abnormalities and computer-guided surgery. </P><P> Methods: In the current work, entropy-based features of microscopic fibrosis mice’ liver images were analyzed using fuzzy c-cluster, k-means and watershed algorithms based on distance transformations and gradient. A morphological segmentation based on a local threshold was deployed to determine the fibrosis areas of images. Results: The segmented target region using the proposed method achieved high effective microscopy fibrosis images segmenting of mice liver in terms of the running time, dice ratio and precision. The image classification experiments were conducted using Gray Level Co-occurrence Matrix (GLCM). The best classification model derived from the established characteristics was GLCM which performed the highest accuracy of classification using a developed Support Vector Machine (SVM). The training model using 11 features was found to be accurate when only trained by 8 GLCMs. Conclusion: The research illustrated that the proposed method is a new feasible research approach for microscopy mice liver image segmentation and classification using intelligent image analysis techniques. It is also reported that the average computational time of the proposed approach was only 2.335 seconds, which outperformed other segmentation algorithms with 0.8125 dice ratio and 0.5253 precision.</P>

Funder

Wenzhou Medical University

Natural Science Foundation of Zhejiang Province

The National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3