Prediction of Protein Ubiquitination Sites in Arabidopsis thaliana

Author:

Chen Jiajing1,Zhao Jianan1,Yang Shiping1,Chen Zhen1,Zhang Ziding1

Affiliation:

1. National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China

Abstract

Background: As one of the most important reversible protein post-translation modification types, ubiquitination plays a significant role in the regulation of many biological processes, such as cell division, signal transduction, apoptosis and immune response. Protein ubiquitination usually occurs when ubiquitin molecule is attached to a lysine on a target protein, which is also known as “lysine ubiquitination”. Objective: In order to investigate the molecular mechanisms of ubiquitination-related biological processes, the crucial first step is the identification of ubiquitination sites. However, conventional experimental methods in detecting ubiquitination sites are often time-consuming and a large number of ubiquitination sites remain unidentified. In this study, a ubiquitination site prediction method for Arabidopsis thaliana was developed using a Support Vector Machine (SVM). Methods: We collected 3009 experimentally validated ubiquitination sites on 1607 proteins in A. thaliana to construct the training set. Three feature encoding schemes were used to characterize the sequence patterns around ubiquitination sites, including AAC, Binary and CKSAAP. The maximum Relevance and Minimum Redundancy (mRMR) feature selection method was employed to reduce the dimensionality of input features. Five-fold cross-validation and independent tests were used to evaluate the performance of the established models. Results: As a result, the combination of AAC and CKSAAP encoding schemes yielded the best performance with the accuracy and AUC of 81.35% and 0.868 in the independent test. We also generated an online predictor termed as AraUbiSite, which is freely accessible at: http://systbio.cau.edu.cn/araubisite. Conclusion: We developed a well-performed prediction tool for large-scale ubiquitination site identification in A. thaliana. It is hoped that the current work will speed up the process of identification of ubiquitination sites in A. thaliana and help to further elucidate the molecular mechanisms of ubiquitination in plants.

Funder

National Training Program of Innovation and Entrepreneurship for Undergraduates

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3