Affiliation:
1. School of Information Science and Engineering, Hunan University, Changsha, China
Abstract
Background:
Recently, ample researches show that microRNAs (miRNAs) not only
interact with coding genes but interact with a pool of different RNAs. Those RNAs are called
miRNA sponges, including long non-coding RNAs (lncRNAs), circular RNA, pseudogenes and
various messenger RNAs. Understanding regulatory networks of miRNA sponges can better help
researchers to study the mechanisms of breast cancers.
Objective:
We develop a new method to explore miRNA sponge networks of breast cancer by combining miRNAdisease-lncRNA and miRNA-target networks (MSNMDL).
Method:
Firstly, MSNMDL infers miRNA-lncRNA functional similarity networks from miRNAdisease-
lncRNA networks. Secondly, MSNMDL forms lncRNA-target networks by using lncRNA
to replace the role of matched miRNA in miRNA-target networks according to the lncRNA-miRNA
pair of miRNA-lncRNA functional similarity networks. And MSNMDL only retains the genes of
breast cancer in lncRNA-target networks to construct candidate miRNA sponge networks. Thirdly,
MSNMDL merges these candidate miRNA sponge networks with other miRNA sponge interactions
and then selects top-hub lncRNA and its interactions to construct miRNA sponge networks.
Results:
MSNMDL is superior to other methods in terms of biological significance and its identified modules might
act as module signatures for prognostication of breast cancer.
Conclusion:
MiRNA sponge networks identified by MSNMDL are biologically significant and are
closely associated with breast cancer, which makes MSNMDL a promising way for researchers to
study the pathogenesis of breast cancer.
Funder
National Key Research and Development Program
National Nature Science Foundation of China
Publisher
Bentham Science Publishers Ltd.
Subject
Computational Mathematics,Genetics,Molecular Biology,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献