Exploring miRNA Sponge Networks of Breast Cancer by Combining miRNA-disease-lncRNA and miRNA-target Networks

Author:

Tian Lei1ORCID,Wang Shu-Lin1

Affiliation:

1. School of Information Science and Engineering, Hunan University, Changsha, China

Abstract

Background: Recently, ample researches show that microRNAs (miRNAs) not only interact with coding genes but interact with a pool of different RNAs. Those RNAs are called miRNA sponges, including long non-coding RNAs (lncRNAs), circular RNA, pseudogenes and various messenger RNAs. Understanding regulatory networks of miRNA sponges can better help researchers to study the mechanisms of breast cancers. Objective: We develop a new method to explore miRNA sponge networks of breast cancer by combining miRNAdisease-lncRNA and miRNA-target networks (MSNMDL). Method: Firstly, MSNMDL infers miRNA-lncRNA functional similarity networks from miRNAdisease- lncRNA networks. Secondly, MSNMDL forms lncRNA-target networks by using lncRNA to replace the role of matched miRNA in miRNA-target networks according to the lncRNA-miRNA pair of miRNA-lncRNA functional similarity networks. And MSNMDL only retains the genes of breast cancer in lncRNA-target networks to construct candidate miRNA sponge networks. Thirdly, MSNMDL merges these candidate miRNA sponge networks with other miRNA sponge interactions and then selects top-hub lncRNA and its interactions to construct miRNA sponge networks. Results: MSNMDL is superior to other methods in terms of biological significance and its identified modules might act as module signatures for prognostication of breast cancer. Conclusion: MiRNA sponge networks identified by MSNMDL are biologically significant and are closely associated with breast cancer, which makes MSNMDL a promising way for researchers to study the pathogenesis of breast cancer.

Funder

National Key Research and Development Program

National Nature Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3