MDAlmc: A Novel Low-rank Matrix Completion Model for MiRNADisease Association Prediction by Integrating Similarities among MiRNAs and Diseases

Author:

Zeng Xueying1,Yang Jialiang234,Wang Kun1,Xu Junlin5,Tian Geng63,Li Yang1

Affiliation:

1. School of Mathematical Sciences, Ocean University of China, Qingdao 266000, China

2. Geneis Beijing Co., Ltd., Beijing 100102, China

3. Qingdao Genesis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China

4. Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China

5. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

6. Geneis Beijing Co., Ltd., Beijing 100102, China

Abstract

Introduction: The importance of microRNAs (miRNAs) has been emphasized by an increasing number of studies, and it is well-known that miRNA dysregulation is associated with a variety of complex diseases. Revealing the associations between miRNAs and diseases are essential to disease prevention, diagnosis, and treatment. Methods: However, traditional experimental methods in validating the roles of miRNAs in diseases could be very expensive, labor-intensive and time-consuming. Thus, there is a growing interest in predicting miRNA-disease associations by computational methods. Though many computational methods are in this category, their prediction accuracy needs further improvement for downstream experimental validation. In this study, we proposed a novel model to predict miRNA-disease associations by low-rank matrix completion (MDAlmc) integrating miRNA functional similarity, disease semantic similarity, and known miRNA-disease associations. In the 5-fold cross-validation, MDAlmc achieved an average AUROC of 0.8709 and AUPRC of 0.4172, better than those of previous models. Results: Among the case studies of three important human diseases, the top 50 predicted miRNAs of 96% (breast tumors), 98% (lung tumors), and 90% (ovarian tumors) have been confirmed by previous literatures. And the unconfirmed miRNAs were also validated to be potential disease-associated miRNAs. Conclusion: MDAlmc is a valuable computational resource for miRNA–disease association prediction.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Ocean University of China

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3