Deep-BSC: Predicting Raw DNA Binding Pattern in Arabidopsis Thaliana

Author:

Bukhari Syed Adnan Shah1,Razzaq Abdul1ORCID,Jabeen Javeria1,Khan Shaheer1,Khan Zulqurnain2

Affiliation:

1. Department of Computer Science, Faculty of Social Science and Humanities, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan

2. Department of Biotechnology, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan

Abstract

Background: With the rapid development of the sequencing methods in recent years, binding sites have been systematically identified in such projects as Nested-MICA and MEME. Prediction of DNA motifs with higher accuracy and precision has been a very important task for bioinformaticians. Nevertheless, experimental approaches are still time-consuming for big data set, making computational identification of binding sites indispensable. Objective: To facilitate the identification of the binding site, we proposed a deep learning architecture, named Deep-BSC (Deep-Learning Binary Search Classification), to predict binding sites in a raw DNA sequence with more precision and accuracy. Methods: Our proposed architecture purely relies on the raw DNA sequence to predict the binding sites for protein by using a convolutional neural network (CNN). We trained our deep learning model on binding sites at the nucleotide level. DNA sequence of A. thaliana is used in this study because it is a model plant. Results: The results demonstrate the effectiveness and efficiency of our method in the classification of binding sites against random sequences, using deep learning. We construct a CNN with different layers and filters to show the usefulness of max-pooling technique in the proposed method. To gain the interpretability of our approach, we further visualized binding sites in the saliency map and successfully identified similar motifs in the raw sequence. The proposed computational framework is time and resource efficient. Conclusion: Deep-BSC enables the identification of binding sites in the DNA sequences via a highly accurate CNN. The proposed computational framework can also be applied to problems such as operator, repeats in the genome, DNA markers, and recognition sites for enzymes, thereby promoting the use of Deep-BSC method in life sciences.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3