Exploiting XG Boost for Predicting Enhancer-promoter Interactions

Author:

Yu Xiaojuan1ORCID,Zhou Jianguo1,Zhao Mingming1,Yi Chao1,Duan Qing1,Zhou Wei1ORCID,Li Jin1

Affiliation:

1. Software School of Yunnan University, Kunming, China

Abstract

Background: Gene expression and disease control are regulated by the interaction between distal enhancers and proximal promoters, and the study of enhancer promoter interactions (EPIs) provides insight into the genetic basis of diseases. Objective: Although the recent emergence of high-throughput sequencing methods have a deepened understanding of EPIs, accurate prediction of EPIs still limitations. Methods: We have implemented a XGBoost-based approach and introduced two sets of features (epigenomic and sequence) to predict the interactions between enhancers and promoters in different cell lines. Results: Extensive experimental results show that XGBoost effectively predicts EPIs across three cell lines, especially when using epigenomic and sequence features. Conclusion: XGBoost outperforms other methods, such as random forest, Adadboost, GBDT, and TargetFinder.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3