Integration of Multi-Omics Data Using Probabilistic Graph Models and External Knowledge

Author:

Tripp Bridget A.1ORCID,Otu Hasan H.2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA | PhD Program of Complex Biosystems, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

2. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Abstract

Background: High-throughput sequencing technologies have revolutionized the ability to perform systems-level biology and elucidate molecular mechanisms of disease through the comprehensive characterization of different layers of biological information. Integration of these heterogeneous layers can provide insight into the underlying biology but is challenged by modeling complex interactions. Objective: We introduce OBaNK: omics integration using Bayesian networks and external knowledge, an algorithm to model interactions between heterogeneous high-dimensional biological data to elucidate complex functional clusters and emergent relationships associated with an observed phenotype. Method: Using Bayesian network learning, we modeled the statistical dependencies and interactions between lipidomics, proteomics, and metabolomics data. The strength of a learned interaction between molecules was altered based on external knowledge. Results : Networks learned from synthetic datasets based on real pathways achieved an average area under the curve score of ~0.85, an improvement of ~0.23 from baseline methods. When applied to real multi-omics data collected during pregnancy, five distinct functional networks of heterogeneous biological data were identified, and the results were compared to other multi-omics integration approaches. Conclusion: OBaNK successfully improved the accuracy of learning interaction networks from data integrating external knowledge, identified heterogeneous functional networks from real data, and suggested potential novel interactions associated with the phenotype. These findings can guide future hypothesis generation. OBaNK source code is available at: https://github.com/bridgettripp/OBaNK.git, and a graphical user interface is available at: http://otulab.unl.edu/OBaNK.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3