A Novel Approach Based on Point Cut Set to Predict Associations of Diseases and LncRNAs

Author:

Kuang Linai1,Zhao Haochen1,Wang Lei1,Xuan Zhanwei1,Pei Tingrui1

Affiliation:

1. Key Laboratory of Intelligent Computing & Information Processing, Xiangtan University, Xiangtan, China

Abstract

Background: In recent years, more evidence have progressively indicated that Long non-coding RNAs (lncRNAs) play vital roles in wide-ranging human diseases, which can serve as potential biomarkers and drug targets. Comparing with vast lncRNAs being found, the relationships between lncRNAs and diseases remain largely unknown. Objective: The prediction of novel and potential associations between lncRNAs and diseases would contribute to dissect the complex mechanisms of disease pathogenesis. associations while known disease-lncRNA associations are required only. Method: In this paper, a new computational method based on Point Cut Set is proposed to predict LncRNA-Disease Associations (PCSLDA) based on known lncRNA-disease associations. Compared with the existing state-of-the-art methods, the major novelty of PCSLDA lies in the incorporation of distance difference matrix and point cut set to set the distance correlation coefficient of nodes in the lncRNA-disease interaction network. Hence, PCSLDA can be applied to forecast potential lncRNAdisease associations while known disease-lncRNA associations are required only. Results: Simulation results show that PCSLDA can significantly outperform previous state-of-the-art methods with reliable AUC of 0.8902 in the leave-one-out cross-validation and AUCs of 0.7634 and 0.8317 in 5-fold cross-validation and 10-fold cross-validation respectively. And additionally, 70% of top 10 predicted cancer-lncRNA associations can be confirmed. Conclusion: It is anticipated that our proposed model can be a great addition to the biomedical research field.

Funder

CERNET Next Generation Internet Technology Innovation

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Reference39 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3