BoT-Net: a lightweight bag of tricks-based neural network for efficient LncRNA–miRNA interaction prediction

Author:

Asim Muhammad NabeelORCID,Ibrahim Muhammad Ali,Zehe Christoph,Trygg Johan,Dengel Andreas,Ahmed Sheraz

Abstract

Abstract Background and objective: Interactions of long non-coding ribonucleic acids (lncRNAs) with micro-ribonucleic acids (miRNAs) play an essential role in gene regulation, cellular metabolic, and pathological processes. Existing purely sequence based computational approaches lack robustness and efficiency mainly due to the high length variability of lncRNA sequences. Hence, the prime focus of the current study is to find optimal length trade-offs between highly flexible length lncRNA sequences. Method The paper at hand performs in-depth exploration of diverse copy padding, sequence truncation approaches, and presents a novel idea of utilizing only subregions of lncRNA sequences to generate fixed-length lncRNA sequences. Furthermore, it presents a novel bag of tricks-based deep learning approach “Bot-Net” which leverages a single layer long-short-term memory network regularized through DropConnect to capture higher order residue dependencies, pooling to retain most salient features, normalization to prevent exploding and vanishing gradient issues, learning rate decay, and dropout to regularize precise neural network for lncRNA–miRNA interaction prediction. Results BoT-Net outperforms the state-of-the-art lncRNA–miRNA interaction prediction approach by 2%, 8%, and 4% in terms of accuracy, specificity, and matthews correlation coefficient. Furthermore, a case study analysis indicates that BoT-Net also outperforms state-of-the-art lncRNA–protein interaction predictor on a benchmark dataset by accuracy of 10%, sensitivity of 19%, specificity of 6%, precision of 14%, and matthews correlation coefficient of 26%. Conclusion In the benchmark lncRNA–miRNA interaction prediction dataset, the length of the lncRNA sequence varies from 213 residues to 22,743 residues and in the benchmark lncRNA–protein interaction prediction dataset, lncRNA sequences vary from 15 residues to 1504 residues. For such highly flexible length sequences, fixed length generation using copy padding introduces a significant level of bias which makes a large number of lncRNA sequences very much identical to each other and eventually derail classifier generalizeability. Empirical evaluation reveals that within 50 residues of only the starting region of long lncRNA sequences, a highly informative distribution for lncRNA–miRNA interaction prediction is contained, a crucial finding exploited by the proposed BoT-Net approach to optimize the lncRNA fixed length generation process. Availability: BoT-Net web server can be accessed at https://sds_genetic_analysis.opendfki.de/lncmiRNA/. Graphic Abstract

Funder

Sartorius Artificial Intelligence Lab

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Computer Science Applications,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3