Study of Optimized Window Aggregate Function for Big Data Analytics

Author:

Kumar Shailender1,Kumar Preetam1,Mittal Aman1

Affiliation:

1. Department of Computer Science, Ambedkar Institute of Advanced Communication Technologies & Research, New Delhi, India

Abstract

Background: A Window Aggregate function belongs to a class of functions, which have emerged as a very important tool for Big Data Analytics. They lend support in analysis and decisionmaking applications. A window aggregate function aggregates and returns the result by applying the function over a limited number of tuples corresponding to current tuple and hence lending support for big data analytics. We have gone through different patents related to window aggregate functions and its optimization. The cost associated with Big data analytics, especially the processing of window functions is one of the major limiting factors. However, now a number of optimizing techniques have evolved for both single as well as multiple window aggregate functions. Methods: In this paper, the authors have discussed various optimization techniques and summarized the latest techniques that have been developed over a period through intensive research in this area. The paper tried to compare various techniques based on certain parameters like the degree of parallelism, multiple window function support, execution time etc. Results: After analyzing all these techniques, segment tree data structure seems better technique as it outperforms other techniques on different grounds like efficiency, memory overhead, execution speed and degree of parallelism. Conclusion: In order to optimize the window aggregate function, segment tree data structure technique is a better technique, which can certainly improve the processing of window aggregate function specifically in big data analytics.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3