Optimization of analytic window functions

Author:

Cao Yu1,Chan Chee-Yong2,Li Jie3,Tan Kian-Lee2

Affiliation:

1. EMC Labs, China

2. National University of Singapore, Singapore

3. Duke University

Abstract

Analytic functions represent the state-of-the-art way of performing complex data analysis within a single SQL statement. In particular, an important class of analytic functions that has been frequently used in commercial systems to support OLAP and decision support applications is the class of window functions . A window function returns for each input tuple a value derived from applying a function over a window of neighboring tuples. However, existing window function evaluation approaches are based on a naive sorting scheme. In this paper, we study the problem of optimizing the evaluation of window functions. We propose several efficient techniques, and identify optimization opportunities that allow us to optimize the evaluation of a set of window functions. We have integrated our scheme into PostgreSQL. Our comprehensive experimental study on the TPC-DS datasets as well as synthetic datasets and queries demonstrate significant speedup over existing approaches.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Evaluation of Arbitrarily-Framed Holistic SQL Aggregates and Window Functions;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

2. Building Advanced SQL Analytics From Low-Level Plan Operators;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

3. WFApprox: Approximate Window Functions Processing;Database Systems for Advanced Applications;2020

4. Study of Optimized Window Aggregate Function for Big Data Analytics;Recent Patents on Engineering;2019-05-27

5. Implementing Window Functions in a Column-Store with Late Materialization;Model and Data Engineering;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3