Predicting Metabolic Reaction Networks with Perturbation-Theory Machine Learning (PTML) Models

Author:

Diéguez-Santana Karel1,Casañola-Martin Gerardo M.2,Green James R.2,Rasulev Bakhtiyor3,González-Díaz Humberto1

Affiliation:

1. Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, and Basque Center for Biophysics CSIC-UPV/EHU, Leioa 48940, Great Bilbao, Biscay, Basque Country, Spain

2. Department of Systems and Computer Engineering, Carleton University, K1S 5B6, Ottawa, ON, Canada

3. Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, United States

Abstract

Background: Checking the connectivity (structure) of complex Metabolic Reaction Networks (MRNs) models proposed for new microorganisms with promising properties is an important goal for chemical biology. Objective: In principle, we can perform a hand-on checking (Manual Curation). However, this is a challenging task due to the high number of combinations of pairs of nodes (possible metabolic reactions). Results: The CPTML linear model obtained using the LDA algorithm is able to discriminate nodes (metabolites) with the correct assignation of reactions from incorrect nodes with values of accuracy, specificity, and sensitivity in the range of 85-100% in both training and external validation data series. Methods: In this work, we used Combinatorial Perturbation Theory and Machine Learning techniques to seek a CPTML model for MRNs >40 organisms compiled by Barabasis’ group. First, we quantified the local structure of a very large set of nodes in each MRN using a new class of node index called Markov linear indices fk. Next, we calculated CPT operators for 150000 combinations of query and reference nodes of MRNs. Last, we used these CPT operators as inputs of different ML algorithms. Conclusion: Meanwhile, PTML models based on Bayesian network, J48-Decision Tree and Random Forest algorithms were identified as the three best non-linear models with accuracy greater than 97.5%. The present work opens the door to the study of MRNs of multiple organisms using PTML models.

Funder

Basque Government

MINECO

ND EPSCoR

North Dakota State University

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3