Qualitative Perturbation Analysis and Machine Learning: Elucidating Bacterial Optimization of Tryptophan Production

Author:

Ramos-Valdovinos Miguel Angel1ORCID,Salas-Navarrete Prisciluis Caheri2,Amores Gerardo R.1,Hernández-Orihuela Ana Lilia3,Martínez-Antonio Agustino1

Affiliation:

1. Laboratorio de Ingeniería Biológica, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-Unidad Irapuato), Km 9.6 Carr. Irapuato-León, Irapuato 36824, Guanajuato, Mexico

2. Data Science Manager Analytics and Data Governance, Nacional de Drogas Av. Vasco de Quiroga No. 3100 Col. Centro de Ciudad Santa Fe, Álvaro Obregón, Mexico City 01210, Mexico

3. Biofab México, 5 de Mayo No. 517, Irapuato 36500, Guanajuato, Mexico

Abstract

L-tryptophan is an essential amino acid widely used in the pharmaceutical and feed industries. Enhancing its production in microorganisms necessitates activating and inactivating specific genes to direct more resources toward its synthesis. In this study, we developed a classification model based on Qualitative Perturbation Analysis and Machine Learning (QPAML). The model uses pFBA to obtain optimal reactions for tryptophan production and FSEOF to introduce perturbations on fluxes of the optima reactions while registering all changes over the iML1515a Genome-Scale Metabolic Network model. The altered reaction fluxes and their relationship with tryptophan and biomass production are translated to qualitative variables classified with GBDT. In the end, groups of enzymatic reactions are predicted to be deleted, overexpressed, or attenuated for tryptophan and 30 other metabolites in E. coli with a 92.34% F1-Score. The QPAML model can integrate diverse data types, promising improved predictions and the discovery of complex patterns in microbial metabolic engineering. It has broad potential applications and offers valuable insights for optimizing microbial production in biotechnology.

Funder

The Consejo Nacional de Ciencia, Humanidades y Tecnología

CONAHCYT Ph.D. fellowship

IDEA Guanajuato project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3