Search for Potential Inducible Nitric Oxide Synthase Inhibitors with Favorable ADMET Profiles for the Therapy of Helicobacter pylori Infections

Author:

Rodrigues Ricardo Pereira1,Ardisson Juliana Santa1,Ribeiro Gonçalves Rita de Cássia1,Oliveira Tiago Branquinho2,Barreto da Silva Vinicius3,Kawano Daniel Fábio4,Kitagawa Rodrigo Rezende1

Affiliation:

1. Graduate Program in Pharmaceutical Sciences, Health Sciences Center - CCS, Federal University of Espirito Santo - UFES, Marechal Campos Av., 1468, Vitoria 29043-900, ES, Brazil

2. Department of Pharmacy, Federal University of Sergipe (UFS-SE), Av. Marechal Rondon s/n, Jd. Rosa Elze, Sao Cristovao 49100-000, SE, Brazil

3. Department of Biomedicine and Pharmacy, Pontifical Catholic University of Goiás, 74605-140 Goiania-GO, Brazil

4. Faculty of Pharmaceutical Sciences, University of Campinas, Rua Candido Portinari 200, 13083-871 Campinas- SP, Brazil

Abstract

Background: Helicobacter pylori is a gram-negative bacterium related to chronic gastritis, peptic ulcer and gastric carcinoma. During its infection process, promotes excessive inflammatory response, increasing the release of reactive species and inducing the production of pro-inflammatory mediators. Inducible Nitric Oxide Synthase (iNOS) plays a crucial role in the gastric carcinogenesis process and a key mediator of inflammation and host defense systems, which is expressed in macrophages induced by inflammatory stimuli. In chronic diseases such as Helicobacter pylori infections, the overproduction of NO due to the prolonged induction of iNOS is of major concern. Objective: In this sense, the search for potential iNOS inhibitors is a valuable strategy in the overall process of Helicobacter pylori pathogeny. Method: In silico techniques were applied in the search of interesting compounds against Inducible Nitric Oxide Synthase enzyme in a chemical space of natural products and derivatives from the Analyticon Discovery databases. Results: The five compounds with the best iNOS inhibition profile were selected for activity and toxicity predictions. Compound 9 (CAS 88198-99-6) displayed significant potential for iNOS inhibition, forming hydrogen bonds with residues from the active site and an ionic interaction with heme. This compound also displayed good bioavailability and absence of toxicity/or from its probable metabolites. Conclusion: The top-ranked compounds from the virtual screening workflow show promising results regarding the iNOS inhibition profile. The results evidenced the importance of the ionic bonding during docking selection, playing a crucial role in binding and positioning during ligand-target selection for iNOS.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3