Modelling of Friction Coefficient for Shoes Type LL By Means of Polynomial Fitting

Author:

Cantone L.,Ottati A.

Abstract

Introduction: The paper describes the automatic procedure, implemented in UIC software TrainDy, for the simulation of friction coefficient of new LL shoes, used to avoid noise from freight traffic. Method: This procedure uses certified experimental data obtained at dynamometer bench as input data and computes a series of polynomials laws that describe the evolution of friction coefficient with speed, for different values of normal force between brake blocks and wheel and for different initial braking speeds. Result: Numerical results are compared against two series of experimental slip tests, carried on Trenitalia freight wagons, in terms of both stopping distances (for different starting speeds and loading conditions) and pressure in brake cylinder, speed and acceleration. Errors in terms of stopping distance are always below 5% whereas errors in terms of maximum acceleration are up to 20%.

Publisher

Bentham Science Publishers Ltd.

Subject

Transportation,Modeling and Simulation

Reference20 articles.

1. European Commission. Position Paper on the European strategies and priorities for railway noise abatement 2003.

2. Commission regulation (EU) No 1304/2014 on the technical specification for interoperability relating to the subsystem ‘rolling stock — noise’ amending Decision 2008/232/EC and repealing Decision 2011/229/EU, 2014.

3. Bracciali A, Pippert M, Cervello S. Railway noise: The contribution of wheels 2009.

4. de Vosa PH, Bergendorffb M, Brennanc M, van der Zijpp F. Implementing the retrofitting plan for the European rail freight fleet. J Sound Vibrat 2006; 293 : 1051-7.

5. UIC CODE 541-4, Brakes - Brakes with composite brake blocks – General conditions for certification of composite brake blocks 4th edition,. 2010. December

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conversion of images of 3D friction maps to study the coupling between coefficient of friction, velocity and contact temperature of the disc brake;Mechanical Systems and Signal Processing;2025-01

2. Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach;Railway Engineering Science;2023-03-07

3. Simulation of the thermo-mechanical behaviour of tread braked railway wheels by means of a 2D finite element model;Tribology International;2023-02

4. The adaptive brake pressure control system for passenger trains;THE 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT, EPIDEMIOLOGY AND INFORMATION SYSTEM (ICENIS) 2021: Topic of Energy, Environment, Epidemiology, and Information System;2023

5. The electro-pneumatic emergency braking system for passenger trains with increased efficiency;THE 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT, EPIDEMIOLOGY AND INFORMATION SYSTEM (ICENIS) 2021: Topic of Energy, Environment, Epidemiology, and Information System;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3