Madecassic Acid Reduces Fast Transient Potassium Channels and Promotes Neurite Elongation in Hippocampal CA1 Neurons

Author:

Siddiqui Sonia1,Khan Faisal2,Jamali Khawar Saeed3,Musharraf Syed Ghulam4

Affiliation:

1. Department of Biochemistry, Dow University of Health Sciences (DUHS), Karachi, Pakistan

2. Department of Neuroscience, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi 75270, Pakistan

3. Department of Surgery, Dow University of Health Sciences (DUHS), Karachi, Pakistan

4. HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi 75270, Pakistan

Abstract

Background and Objective: Madecassic Acid (MA) is well known to induce neurite elongation. However, its correlation with the expression of fast transient potassium (AKv) channels during neuronal development has not been well studied. Therefore, the present study was designed to investigate the effects of MA on the modulation of AKv channels during neurite outgrowth. Methods: Neurite outgrowth was measured with morphometry software, and Kv4 currents were recorded by using the patch clamp technique. Results: The ability of MA to promote neurite outgrowth is dose-dependent and was blocked by using the mitogen/extracellular signal-regulated kinase (MEK) inhibitor U0126. MA reduced the peak current density and surface expression of the AKv channel Kv4.2 with or without the presence of NaN3. The surface expression of Kv4.2 channels was also reduced after MA treatment of growing neurons. Ethylene glycol tetraacetic acid (EGTA) and an N-methyl-D-aspartate (NMDA) receptor blocker, MK801 along with MA prevented the effect of MA on neurite length, indicating that calcium entry through NMDA receptors is necessary for MA-induced neurite outgrowth. Conclusion: The data demonstrated that MA increased neurite outgrowth by internalizing AKv channels in neurons. Any alterations in the precise density of ion channels can lead to deleterious consequences on health because it changes the electrical and mechanical function of a neuron or a cell. Modulating ion channel’s density is exciting research in order to develop novel drugs for the therapeutic treatment of various diseases of CNS.

Funder

Higher Education Commission, Pakistan

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3