Spastin Interacts with CRMP2 to Regulate Neurite Outgrowth by Controlling Microtubule Dynamics through Phosphorylation Modifications

Author:

Li Sumei1,Zhang Jifeng1,Zhang Jiaqi1,Li Jiong1,Cheng Longfei1,Chen Li1,Cha Caihui1,Guo Guoqing1

Affiliation:

1. Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China

Abstract

Aims: Our work aims to revealing the underlying microtubule mechanism of neurites outgrowth during neuronal development and also proposes a feasible intervention pathway for reconstructing neural network connections after nerve injury. Background: Microtubule polymerization and severing form the basis for neurite outgrowth and branch formation. However, the mechanisms that underlie the dynamic instability of microtubules are unclear. Here, we showed that neurite outgrowth mediated by collapsing response mediator protein 2 (CRMP2) can be enhanced by spastin, which had an effect on the severing of microtubule cytoskeleton. Objective: To explore whether neurite outgrowth was mediated by coordination of CRMP2 and spastin. Methods: Hippocampal neurons were cultured in vitro in 24-well culture plates for 4 days before being used to perform the transfection. Calcium phosphate was used to transfect the CRMP2 and spastin constructs and their control into the neurons. An interaction between CRMP2 and spastin was examined by using pull down, CoIP and immunofluorescence colocalization assays. And immunostaining was also performed to determine the morphology of neurites. Results: We first demonstrated that CRMP2 interacted with spastin to promote neurite outgrowth and branch formation. Then our results identified that CRMP2 interacted with the microtubule- binding domain of spastin via its C-terminus, and deleting these binding sites inhibited neurite outgrowth and branch formation. In addition, we confirmed one phosphorylation site at S210 of spastin in hippocampal neurons. Spastin phosphorylation at S210 failed to alter the binding affinity of CRMP2 but inhibited its binding to microtubules. Further study showed that phosphorylation spastin at S210 inhibited the neurite outgrowth induced by CRMP2 and spastin interaction through downregulation of microtubule-severing activity. Conclusion: Taken together, our data demonstrated that both CRMP2 and spastin interaction and the microtubule-severing activity of spastin were required for neurite outgrowth and branch formation.

Funder

Guangzhou Institute of Pediatrics/ Guangzhou Women and Children’s Medical Center

Natural Science Foundation of Guangdong Province, China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3