Modeling the Effect of Sulfur Composition in Dispersed Systems Involving Organosulfur Compounds

Author:

Perez-Sanchez Josué Francisco1,Mendoza-Martínez Ana Maria2,Suárez-Domínguez Edgardo Jonathan1,Palacio-Pérez Arturo3,Rodríguez-Rodríguez Jose Rafael4,Pérez-Badell Yoana4,Izquierdo Kulich Elena Francisca4

Affiliation:

1. FADU Research Centre, UAT, Circuito Universitario S/N, Centro Universitario Sur. Tampico, Tamaulipas, CP 89000, Mexico

2. Autonomous University of Tamaulipas (UAT), CI-SUR. Circuito Universitario S/N. Centro Universitario Sur. Tampico, Tamaulipas. CP 89000, Mexico

3. Instituto de Ingeniería. Universidad Nacional Autónoma de México (UNAM) Circuito Interior S/N Ciudad Universitaria. CdMx, Mexico

4. Physical Chemistry Department, Faculty of Chemistry, Havana University, Zapata y G. Havana, Cuba

Abstract

Background:: Organosulfur compounds within petroleum have far-reaching consequences for the refining industry, combustion of petroleum products, and environmental quality. They induce corrosion in refining equipment, hamper the efficient burning of petroleum products, and contribute to environmental degradation. In high-density asphalt crudes, these compounds are predominantly concentrated within asphaltenes. However, crude oils with extremely high sulfur content, may be distributed across the four constituent families defined by the SARA analysis of crude oil composition. These compounds, characterized by differing polarities, can trigger the formation of a dispersed phase, whose destabilization results in tube clogging issues. Methods:: The research problem focuses on understanding how sulfur composition affects the formation of a dispersed phase in low-polarity organic dispersion media for sulfur-containing hydrocarbons. It is investigated because the presence of sulfur in crude oil significantly affects the behavior of dispersed phases, which can result in operational and environmental quality issues to comprehensively assess the impact of sulfur composition on the dynamics and stability of this dispersed phase, we introduce a mesoscopic model based on the master equation. This model considers the molecular structure of system components and their molecular properties, established through computational quantum chemistry and statistical thermodynamics tools Results:: While our research focuses on a two-phase system, our theoretical insights suggest that increased sulfur content escalates the likelihood of destabilizing the dispersed phase. This adverse effect can be mitigated by incorporating additives capable of reducing the polarizability of the dispersion medium. The novelty lies in the development of a stochastic model to predict the dynamics of dispersed phase formation in sulfur-containing hydrocarbons. This model considers molecular interactions and stochastic processes, offering insights into the influence of sulfur composition on phase behavior. Conclusion:: A stochastic model, based on molecular structure, predicts accelerated formation with increased sulfur concentration, reaching non-equilibrium steady states. Limitations include ad hoc transition probabilities and the exclusion of factors like density and viscosity. Real crudes, with complex compositions, may exhibit different behavior. The presence of sulfur in the dispersion medium enhances the stability of the dispersed system. Our work sheds light on the intricate interplay between sulfur content and the performance of petroleum systems, offering potential solutions to mitigate these issues. Quantitative results include accelerated dispersed phase formation with increased sulfur concentration. Qualitatively, molecular interactions and stochastic processes were explored, highlighting sulfur's impact on phase dynamics.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3